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bstract

In calorimetry and particularly in heat capacity measurements, different characteristic relaxation time constants may perturb the experiment
hich cannot be considered at thermodynamic equilibrium. In this case, thermodynamics of irreversible processes has to be taken into account

nd the calorimetric measurements must be considered as dynamic. In a temperature modulated experiment, such as ac-calorimetry, these non-
quilibrium experiments give rise to the notion of frequency dependent complex heat capacity. In this paper, it is shown that for each irreversible
rocess an experimental frequency dependent complex heat capacity can be inferred. Furthermore, we demonstrate rigorously that a same equality

onnects the imaginary part of these different complex heat capacities with the entropy produced during these irreversible processes. Finally, we
laim that the presence of an imaginary part in the measured heat capacity always indicates that a certain amount of heat does not participate to
he classical equilibrium heat capacity of the sample when measured over the observation time scale.

2007 Elsevier B.V. All rights reserved.
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. Introduction

It is well-known that calorimetric experiments can be per-
urbed by different parasitic relaxation time constants. These
ifferent time constants can alter the measurement in such a
ay that what we measure is not what we really believe. For

xample, in heat capacity measurements, one of the fundamen-
al time constant is τext, the time constant of the adiabaticity.
his is the external relaxation time constant of the temperature
f the sample towards the constant temperature of the bath. If the
ime scale of the measurement is larger than this time constant,
he calorimetric measurement cannot be considered as adiabatic
in a calorimetric sense and not in a thermodynamic sense) and
eat has time to relax towards the thermal bath. A correction
as thus to be taken into account considering the heat exchange
oefficient in order to correctly derive the heat capacity of the
ample. The second important relaxation time constant is still
ue to the non-equilibrium behaviour of the temperature of the
hole sample. It is connected to the diffusion of heat within
he body of the sample. What is thus the exact temperature of
he whole sample when the thermal diffusivity is low? Suppose
hat in a modulated temperature calorimetric experiment the fre-
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E-mail address: jean-luc.garden@grenoble.cnrs.fr (J.-L. Garden).

o
t
l
i
l

t

040-6031/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2007.05.022
brium thermodynamics; Entropy production; Relaxation time constants

uency of the input power is so high that at the other extremity of
he sample the thermometer never oscillates. We can understand
hat, in this case, the exact heat capacity of the sample is never
ecorded. The third time constant that we want to consider in this
rticle is the kinetic relaxation time constant of specific internal
egrees of freedom of the sample. When heat is supplied to the
ample in a fast way, some of these degrees of freedom have
ever time to absorb this quantity of heat over the time scale of
he experiment. In this case, these degrees of freedom do not
ontribute to the heat capacity measured by the experimentalist.
n modulated temperature measurements this particularity has
rovided the famous notion of frequency dependent complex
eat capacity with a real and an imaginary part satisfying the
ramers–Kronig dispersion relations (see for example, the fol-

owing reviews and references therein [1–3]). This latter notion
as been already investigated in the literature of calorimetry and
e do not want to discuss this in details here. Nevertheless, we
ill recall that the imaginary part of the complex heat capacity is,

n this case, also deeply connected to the entropy produced over
ne period of the temperature cycle. The last of these relaxation
ime constants that we want to address is not widely known and is
inked to the relaxation of the thermal power due to finite veloc-

ty of the heat carriers. It involves a regime where the Fourier’s
aw becomes inexact.

In this paper, we demonstrate that for each of this characteris-
ic time constants, there is a different irreversible process where a

mailto:jean-luc.garden@grenoble.cnrs.fr
dx.doi.org/10.1016/j.tca.2007.05.022
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ifferent complex heat capacity can be inferred. In these four dif-
erent cases, the imaginary part of these complex heat capacities
s always connected to the entropy produced over one period of
he temperature cycle during the irreversible process. The paper
s composed of the following different sections involving each
ime one of the time constants aforementioned. Before going into
he details of these different sections, we would like firstly, to
xplain what we want to say by “time scale of the measurement”,
hich is another very important time constant in experimental

alorimetry.

. Time scale of the measurement

The time scale of the measurement is the smallest character-
stic time interval during which a physical property of a system
s recorded by the experimentalist without any specific aver-
ging. Over this time interval, an experimental point can be
nferred. In classical calorimetric experiment, for example in
ifferential scanning calorimetry (DSC), this time interval is
he smallest finite time interval �t during which an experimen-
al heat capacity point (more precisely a differential heat flow
oint) is recorded. The measured heat capacity is thus the natural
veraging of the instantaneous heat capacity taken over this time
nterval. In modulated temperature measurements, this charac-
eristic time is the period of the oscillating input thermal power.
he influence on the measurement of the other time constants
epends on the ratio of their own value as compared to this char-
cteristic time scale. The time scale of the measurement is the
eference against which the various time constants encountered
n the calorimetric experiments have to be compared. Let us take
well-known example: when we consider the kinetic relaxation

ime constant due to slow structural change inside a sample or
he slow advancement of a chemical reaction, the ratio of this
ime constant on the time scale of the measurement is called the
eborah number [4]:

= τ

�t
(1)

his typical ratio is used to characterize the difference between a
iquid and a glassy state. For infinitely fast time scale of the mea-
urement all is frozen (D → +∞) and nothing has time to move,
e observe a frozen-in solid. On the contrary, under an observa-

ion time scale which tends to the infinity all is in movement and
e observe a liquid (D → 0). In calorimetric modulated tem-
erature experiments, the Deborah number ωτ, appears in the
enominator of the frequency dependent complex heat capacity.

. External thermal relaxation time constant of the
emperature

.1. Definition

Let us consider the Fig. 1, where a finite thermodynamic

ystem with a heat capacity C is linked via a heat exchange coef-
cient K to a thermal bath with a constant temperature T0. The
acroscopic thermodynamic system is a sample under calori-
etric investigation. Its temperature is well defined and in this

3

a

ig. 1. A simple classical finite thermodynamic system (a sample under calori-
etric investigation) of heat capacity C at a temperature T is linked via a thermal

onductance K to a thermal bath of constant temperature T0.

ection we consider that its thermal diffusivity is infinite. The
xternal thermal relaxation time constant of the temperature of
he system defines the temperature of equilibrium as compared
o that of the heat bath. It represents the time constant necessary
or the heat to relax towards the heat sink. At thermodynamic
quilibrium the temperature of the system equals precisely those
f the bath. On the other hand, the temperature of the system can
e constant and different from the temperature of the bath when
tationary conditions are fulfilled. The system is then in a con-
tant non-equilibrium state often called a stationary steady-state.
he ratio of the external thermal time constant on the time scale
f the measurement defines the condition of adiabaticity of the
easurement. According to the value of this ratio, the calori-
etric experiment may be realized in an adiabatic manner or

ot. The calorimetric experiment is adiabatic (in a calorimetric
ense and not in a thermodynamic sense) if there is not heat
xchanged between the sample and the heat bath, other than the
uantity of heat supplied to (or released from) the sample by the
xperimentalist during the time scale of the measurement. If the
xperiment is not adiabatic, heat has time to flow away from the
ample during this characteristic time. Subsequently, during this
ime scale the temperature of the sample relaxes exponentially.
his adiabaticity time constant is defined by

ext = C

K
(2)

is the heat capacity of the sample and K is the coefficient of
eat exchange.
.2. Principle of the ac-calorimetry method

In this section, we shall briefly recall the principle of the
c-calorimetry method which will serve as a model for our
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emonstration, although all the developments made in this paper
an be applied with more or less complications to all other
ynamic calorimetric methods.

An input thermal power P(t) = Pdc + Pac constituted by a dc
nd an ac term is supplied to the system. In the stationary regime,
he temperature response is composed by a dc and an ac com-
onent:

Tdc = Tdc − T0 = P0

K
, T ∗

ac = δTac exp[i(ωt − ϕ)] (3)

he star indicates complex notations of the oscillating variables
sed here for the sake of calculus simplicity (for example the
xact oscillating temperature of the system is the real part of T ∗

ac :
ac = Re(T ∗

ac) = δTac cos(ωt − ϕ)). Tdc is the mean constant dc
emperature of the sample, T0 the constant temperature of the
ath, δTac the amplitude of the oscillating temperature, ω is the
ngular frequency and ϕ is the phase between the oscillating
emperature and the input oscillating heat flow with a phase
aken by convention equal to zero:

∗
ac = P0 exp(iωt) (4)

hen the period 2π/ω is the only characteristic time involved
n the measurement, the heat capacity is simply:

mes = P∗
ac

dT ∗
ac/dt

= P∗
ac

iωT ∗
ac

= P0

ωδTac
(5)

ith a phase lag of π/2 between the thermal power and the
emperature.

.3. Complex heat capacity

When the heat exchange coefficient cannot be neglected in
he measurement (no adiabatic measurement) the temperature
f the sample obeys in this case to the following differential
quation:

(t) = C
dT

dt
+ K(T − T0) (6)

onsidering only the oscillating part of this equation in the sta-
ionary regime (the dc part is given in Eq. (3)) the equation can
e transformed in

extṪ
∗
ac + T ∗

ac = P∗
ac

K
(7)

n the stationary regime, the resolution of this equation gives
irectly the oscillating temperature:

∗
ac = P∗

ac

K(1 + iωτext)
= P∗

ac

K + iωC
(8)

e observe the appearance of the adiabaticity ratio, ωτext, on
he denominator which is a direct indication of the strength of
he calorimetric adiabaticity of the measurement. This equa-
ion simply means that the oscillating temperature is the sum of
wo perpendicular components. An experimental complex heat

apacity can be derived from the definition (5):

mes = P∗
ac

iωT ∗
ac

= K + iωC

iω
= C − i

K

ω
= C′ − iC′′ (9)

s

f
v

ig. 2. The total system under interest is composed by two homogeneous sub-
ystems, the sample and the heat bath, which are thermally coupled each other
y the heat exchange coefficient K.

herefore, considering only the adiabaticity time constant, the
easured heat capacity is a complex number. The real part of

he complex heat capacity is the heat capacity of the sample. The
maginary part has the dimension of a heat capacity. In fact it is a
hermal conductance by unit of angular frequency. It is linked to
he heat lost over the time scale of the measurement. As we have

entioned before, its value depends directly on the ratio of the
hermal relaxation time on the time scale of the measurement,
τext. This is however an irreversible thermodynamics process
ecause heat flows out of the sample irreversibly.

.4. Entropy production

When the adiabaticity time constant plays a role, the sample
annot be regarded as a thermally insulated thermodynamic sys-
em. Hence, the heat bath (or thermal bath) has to be taken into
onsideration in the balance of the entropy produced during this
hermodynamic non-equilibrium process (see Fig. 2). We are in
resence of a single thermodynamic system composed by two
omogeneous discrete sub-systems. One is the sample and the
ther the heat bath. A thermodynamic sub-system is homoge-
eous if there is no gradient of intensive parameters wherein.
xchanges of extensive parameters between each sub-system
re simply due to differences of intensive parameters such as
he pressure (volume exchange), the chemical potential (matter
xchange) and evidently the temperature (heat exchange). For
omogeneous discrete sub-systems the calculus of the entropy
roduced in the entire system due to exchange of extensive
arameters between each sub-part are thus very simple. In the
resent case, the entropy produced in the entire system (sam-
le + bath) is only due to the exchange of heat between the

ample and the heat bath (see Fig. 3).

In the following, we assume that the stationary conditions are
ulfilled. That is to say, the dc temperature has reached a constant
alue Tdc (or this value varies so slowly that its rate can be
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ig. 3. The entropy produced inside the system is due to the exchange of heat
etween the two sub-systems with different temperatures.

eglected). This value corresponds to the dc temperature of the
tationary steady non-equilibrium state. Since the temperature
f the system is the sum of a dc and an ac component, the entropy
roduction can be separated in two contributions. The dc part
s due to the mean constant heat flux exchanged between the
ample and the bath. There is a dc temperature gradient between
he sample and the bath (see Fig. 4). It is the reason why a
tationary non-equilibrium steady-state is reached at the level of
he sample. The ac term is linked to the heat loss towards the
ath due only to the oscillatory part of the temperature. Let us
ee how these two terms can appear and can be separated. Let us
nvisage the case of a thermal power supplied to the sample (see

ig. 4). Thus, the temperature of the sample is greater than those
f the heat bath, T = Tdc + Tac > T0. Hence, since it has enough
ime, heat relaxes irreversibly from the sample to the heat sink.

ig. 4. The thermodynamic system is represented beside a time versus temper-
ture diagram. A dc constant temperature gradient is maintained between the
ystem and the heat bath. Hence, a dc heat exchange of heat is established across
he thermal link. Also an ac temperature component oscillates at the level of the
ample. Hence, an ac heat exchange of heat is established across the thermal
ink.
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ystem by the experimentalist. Inside the system, the amount of heat which goes
way from the sample via the heat exchange coefficient K is entirely captured
y the thermal bath (dQS

i = dQB
i ).

From the Fig. 5, the amount of heat involved in the ac-
alorimetry experiment can be separated in two different types.
t the level of the sample, there is external heat exchanged
etween the sample and the surroundings (dQS

e ) due to the
eat flow supplied by the experimentalist, and an internal heat
xchange due to the relaxation towards the bath (dQS

i ). At the
evel of the bath, there is only an internal heat exchange flowing
rom the sample (dQB

i ). Obviously, we have the two following
elations:

QS = dQS
e + dQS

i (10)

hich is just the expression of the conservation of energy at the
evel of the sample, and where dQS

e is positive if heat is sup-
lied to the sample from the outside world, and dQS

i is negative
ecause heat flows from the hot to the cold points. We have also:

QS
i + dQB

i = 0 (11)

hich simply means that what is released from the sample is
aken by the bath. Afterwards, considering the entire system
sample-bath”, the total entropy variation is written:

Stot = dQS

T
+ dQB

T0
= dQS

e

T
+ dQS

i

T
+ dQB

i

T0

= dQS
e

T
+ dQS

i

(
1

T
− 1

T0

)
(12)

his expression can be separated in two contributions. One is
xternal and must be positive or negative depending on either
eat is supplied to the sample or released from the sample by

he experimentalist. The other contribution is definitely positive
nd called internal entropy variation inside the system. It is only
his contribution which is connected to the irreversible process
ue to the heat flow from the sample towards the heat bath.
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Let us now envision this latter term in details:

iS = dQS
i

(
1

Tac + Tdc
− 1

T0

)
≈ −dQS

i
�Tdc + Tac

T 2
0

(13)

he two temperature differences �Tdc and Tac have been
eglected as compared to T0 (recall that in ac-calorimetry
= Tdc + Tac = T0 + �Tdc + Tac). Subsequently, the instanta-
eous rate of production of entropy is

i = diS

dt
= −dQS

i

dt

(�Tdc + Tac)

T 2
0

(14)

n ac-calorimetry from Sullivan and Seidel work [5], it is well-
nown that the heat flux exchanged between the sample and the
eat bath via the heat exchange coefficient K is the sum of two
omponents, a dc and an ac term included in the second term of
he right-hand side of (6):

dQS
i

dt
= K�Tdc + KTac (15)

onsequently the entropy production takes the following expres-
ion:

i = K

T 2
0

(�Tdc + Tac)2 (16)

hich can be separated in two components. The first is a dc
omponent:

dc
i = K

(
ΔTdc

T0

)2

= P0
�Tdc

T 2
0

= P2
0

KT 2
0

(17)

his term represents the constant and continuous entropy pro-
uced inside the system due to the dc constant heat flow between
he sample and the heat bath in the stationary regime. This heat
ow is exactly compensated by the dc thermal power supplied
y the experimentalist to the sample, maintaining it in a non-
quilibrium stationary state. The second term is the sum of two
scillatory terms (one oscillates at the frequency of the input
ower and the second at twice the frequency):

ac
i = K

(
Tac

T0

)2

+ 2K
�TdcTac

T 2
0

(18)

his term is the instantaneous entropy production due to
he oscillatory component of the sample temperature relaxing
owards the bath. Now, if we take the average of this entropy
roduction over one period of the temperature cycle, then it
emains only the contribution of the twice frequency oscillating
erm:

¯ ac
i = K

(
δTac

T0

)2
T/2∫

−T/2

cos2(ωt − ϕ) dt = π

(
δTac

T0

)2
K

ω
(19)
ith Eq. (9) of the complex heat capacity we have:

¯ ac
i = π

(
δTac

T0

)2

C′′ (20)

m
p
o
a
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ence, in one period of the temperature modulation there is
ositive creation of entropy due to oscillatory heat exchange
etween the sample and the heat bath, which is proportional
o the imaginary part of the experimental frequency dependent
omplex heat capacity. To be more precise, knowing that the
odulus of the oscillating temperature can be expressed as

Tac = P0

ω|Cmes| (21)

nd also that the amount of heat involved per half-period of the
scillating cycle is

Q0 =
T/4∫

−T/4

P0 cos(ωt) dt = 2
P0

ω
(22)

hen over one period of the temperature oscillation (20) can be
xpressed as follows:

¯ ac
i = π

4

δQ2
0

T 2
0

C′′

|Cmes|2 = π

4

δQ2
0

T 2
0

Im

(
1

Cmes

)
(23)

ence, the entropy produced irreversibly per period of the tem-
erature modulation due to oscillatory exchange of heat between
he sample and the thermal bath is directly proportional to the
maginary part of the complex impedance of the measurement.
uring this period of time, we can say that heat is lost (dissipated,

bsorbed) because it does not contribute to the measurement of
he usual heat capacity of the sample. All this last formula have
een already derived by different authors who start in deriving
he entropy at thermodynamic equilibrium to the second order
erm in the oscillatory temperature [2,6,7]. Nevertheless, as it
as clarified in a recent paper [3], this derivation has nothing

o do with the well-known classical expression of the frequency
ependent complex heat capacity where internal degrees of free-
om are involved (see the last section). Here, this approach
oncerns the ac-calorimetry case, but the TMDSC method will
e envisaged under the same point of view in a forthcoming pub-
ication. Indeed, in TMDSC method the condition of adiabaticity
s basically not fulfilled, because generally heat is directly sup-
lied to the sample from the heat bath via the heat exchange
oefficient K.

. Internal thermal relaxation time constant of the
emperature

.1. Definition

As in the previous section, this thermal time constant is also
elated to the thermal disequilibrium of the sample. In this case,
he thermodynamic system that we have to consider is only com-
osed by the sample which is thermally insulated from the heat
ath (the condition of adiabaticity is supposed to be respected).
he ratio of this thermal time constant on the time scale of the

easurement defines the condition of homogeneity of the tem-

erature of the sample. That is to say, according to the value
f this ratio, the temperature may be or may not be the same
nywhere and at any time within the sample. The calorimetric



6 moch

e
t
d
p
l
o
d
t
L
i
t
h
i
i
d

4

s
t
f
r
i
m
F
P

d

F
b
t
d
b

f
a

w

D

w
s
v

T

w
t
t

λ

T
a

2 J.-L. Garden, J. Richard / Ther

xperiment fulfils the condition of temperature homogeneity of
he sample if during the time scale of the measurement heat is not
iffused (or absorbed) along the spatial dimensions of the sam-
le. If the requirement is not fulfilled, heat is lost along the path
inking the hot point (generally the heater) and the cold point
f the sample (usually the thermometer). In this case, as in all
iffusion phenomena, the temperature measured at the level of
he thermometer relaxes exponentially over a spatial dimension.
et us point out that not only the finite value of the diffusiv-

ty of the sample medium is a limiting factor, but also all the
hermal interfaces (thermal contacts) encountered between the
ot source and the thermometer are limiting factors for a perfect
nternal temperature equilibrium of the sample. Let us now enter
n the general treatment of complex heat capacity measured in
iffusive media.

.2. Semi-infinite diffusive medium

Generally, the case of semi-infinite diffusive medium is the
implest and pedagogical example to treat diffusion of heat from
he Fourier’s law in oscillatory regime. Here we used this model
or simplicity keeping in mind the objective that we want to
each, but the more complicated ac-calorimetry case is treated
n the appendix. Let a semi-infinite homogeneous medium ther-
ally coupled to a thermal bath of constant temperature T0 (cf.
ig. 6). Let us suppose a heater supplying an ac thermal power
∗
ac at the “free face” of the system at the origin of the one
imensional spatial axis (x = 0). In the oscillatory regime and

ig. 6. A semi-infinite homogeneous medium is directly linked to a thermal
ath of constant temperature. In a stationary condition, a heater supplied an ac
hermal power at the top face of the medium located at the position x = 0. At a
istance x from the top face, a thermometer records the temperature. The thermal
ath is located at an infinite distance from the heater.
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orgetting the dc term for simplicity, the oscillatory temperature
t a distance x from the heater obeys to the diffusion equation:

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2 (24)

here D is the thermal diffusivity of the medium:

= k

ρc
(25)

here k is the thermal conductivity, ρ the density and c is the bulk
pecific heat. The ac stationary solution of this spatio-temporal
ariables equation is [8]:

∗
ac = δT0 exp

(
−x

λ

)
exp

[
i
(
ωt − x

λ
− π

4

)]
(26)

here δT0 is the amplitude of the oscillating temperature at
he origin and λ is the characteristic diffusion length of the
emperature within the sample:

=
√

2D

ω
(27)

he phase −π/4 is due to the boundary condition P = P0 exp(iωt)
t x = 0. The Fourier’s law establishes the relation between the
eat flux propagating inside the sample and the temperature
radient at a distance x from the origin:

(x, t) = −k
∂T

∂x
(x, t) (28)

n the oscillatory and stationary regimes this heat flux is

∗
ac = P0 exp

(
−x

λ

)
exp

[
i
(
ωt − x

λ

)]
(29)

here P0 is the amplitude of the alternative power at the origin
hich is linked to δT0 by the following equation:

0 = k
√

2

λ
δT0 =

√
kρcωδT0 (30)

ow, integrating the diffusion equation (Eq. (24)) from 0 to the
nfinity (semi-infinite medium) we obtain:

+∞∫
0

∂P∗
ac

∂x
dx = −S

+∞∫
0

ρc
∂T ∗

ac

∂t
dx (31)

hich gives:

SP0 exp(iωt) = −SρciωδT0 exp
[
i
(
ωt − π

4

)] ∞∫
0

exp

×
[
−x

λ
(1 + i)

]
dx = −Cλ iωδT0

× exp[i(ωt − (π/4))]
(32)
1 + i

here Cλ = ρcSλ is a characteristic heat capacity obtained on a
haracteristic volume given by the product of the surface S of
he sample and the characteristic diffusion length λ. The natural
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efinition of an experimental complex heat capacity is in this
ase:

mes = P∗
ac(x = 0, t)

∂T (x = 0, t)/∂t
(33)

his complex heat capacity can be deduced for example from
uch an experiment realized with a thermometer placed at the
ame location than those of the heater. It is worth noticing that
his expression is valid at any position x along the x-dimension
f the sample, because the ratio of the thermal power on the
emperature time derivative is independent of x. With (32) it
ields to

mes = Cλ

1 + i
= Cλ

2
(1 − i) (34)

t has to be remarked that in the case of diffusive semi-infinite
edium, the heat capacity which can be inferred from an oscil-

ating temperature experiment with a heater placed at the top of
he sample, and a thermometer located at any distance x from
his side, is equal to half of the heat capacity calculated from
volume of the homogeneous sample represented by the sur-

ace S and the characteristic thermal diffusion length λ. This
eat capacity can be measured equally from the in-phase or
he out-of-phase oscillating temperature component. It is well-
nown that the relaxation time constant involved in these types
f situations is approximately:

int ≈ L2

D
(35)

ith (27) we have

τint ≈ L2

λ2 (36)

onsequently the heat capacity measured in this latter experi-
ent can be expressed as follows:

λ ≈ C√
ωτint

(37)

here C is the heat capacity due to the entire volume of the
ample.

.3. Entropy production

The instantaneous entropy production by unit of volume
esulting from the irreversible aspect of the propagation of heat
n diffusive media is given by

v
i = k

T 2
0

(
∂T

∂x

)2

(38)

his formula is derived again from the product of the thermody-

amic force �∇x(1/T ) ≈ �∇xT/T 2

0 in the linear regime of validity
f the Fourier’s law, with the thermodynamic induced flux, the
eat flux (see (28)). Multiplying by the constant surface S and
ntegrating from zero to the infinity, it gives the instantaneous

K
t
fi
i
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ate of production of entropy in the entire volume:

i = S

+∞∫
0

k

T 2
0

(
∂T

∂x

)2

dx

= 2k(δT0)2S

λ2T 2
0

+∞∫
0

exp

(
−2x

λ

)
cos2

(
ωt − x

λ

)
dx

= (δT0)2ωCλ

4T 2
0

[
1 + 1

2
cos(2ωt) + 1

2
sin(2ωt)

]
(39)

aking the time average of this latter expression over one period
f the temperature cycle gives:

¯i = π
(δT0)2

T 2
0

Cλ

2
= π

(δT0)2

T 2
0

C′′ (40)

n the appendix, we show also the validity of this relation in
he particular case of ac-calorimetry in diffusive regime. We can
ssume that this expression is also valid for any kind of diffusive
xperiments with any types of sample with complicated spatial
eometry.

. Internal thermal relaxation time constant of the heat
ux

.1. Beyond the Fourier’s law

Some specific situations can happen in which the Fourier’s
aw is not valid anymore. As a matter of fact, Fourier’s law
ields to a paradoxical infinite speed of propagation of heat in
medium. In fact, when the ratio of the absolute temperature

n the mean free path of the heat carriers becomes small as
ompared to the temperature gradient, the Fourier’s law goes
ut of its domain of validity [9]:

1

T

∂T

∂x

 1

l
⇒ Fourier is not valid (41)

here l is the mean free path of the heat carriers. This partic-
lar situation can be reached theoretically and experimentally
n studies of propagation of heat in non-homogeneous diffusive

edia [10]. Anyway, the discussion on the domain of validity
f the Fourier’s law seems to be still opened. For instance, let
s suppose that a modulated calorimetric experiment is realized
n such a situation. A supplementary term, taking into account
he relaxation time constant τ of the heat flux (relaxation of the
eat carriers) has to be added to the classical Fourier’s law. This
ields to the Vernotte–Cattaneo equation [11,12]:

dQ̇

dt
+ dQ

dt
= Ks�T (42)

t is straightforward to see that the classical Fourier’s law, where

s is the internal thermal conductance of a sample, is found when

his relaxation time constant becomes negligible. Eq. (42) is a
rst order linear equation ensuring that once again the treatment

s realized in the vicinity of thermodynamic equilibrium. As
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sual, the temperature variation �T in (42) is written:

T = T − T0 = Tdc + Tac − T0 (43)

f we write P = dQ/dt the heat flux, then at equilibrium Ṗ =
and Tac = 0 and we recover the Fourier’s law:

0 = Ks(Tdc − T0) (44)

n order to consider disequilibrium around this constant dc situ-
tion (stationary condition), the Vernotte–Cattaneo equation can
ore explicitly be written:

δṖ + δP = KsTac (45)

here δP = P(t) − P0 is the little departure of P around its
onstant equilibrium value P0. The resolution of (45) in complex
otations and under stationary conditions yields to

P∗ = KsT
∗
ac

1 + iωτ
(46)

et us remark that the heat flux propagating inside the sample is
he sum of two oscillating components with a phase difference
f π/2. A part of the thermal power is dispersed, and the other
art is absorbed due to the relaxation of the heat carriers inside
he sample. From this last result, a different perspective might be
o consider a complex thermal conductance inside the sample.

.2. Complex heat capacity

Starting with the definition (5) of the complex heat capacity
e obtain:

mes = δP∗

iωT ∗
ac

= −Ks

ω

ωτ

[1 + (ωτ)2]
− i

Ks

ω

1

[1 + (ωτ)2]
(47)

onsequently, just beyond the Fourier’s law the imaginary part
f the frequency dependent complex heat capacity is

′′ = Ks

ω

1

[1 + (ωτ)2]
(48)

.3. Entropy production

Let us start with the same definition (14) of the rate of pro-
uction of entropy as a product of a thermodynamic force by the
nduced thermodynamic flux:

i = diS

dt
= −dQS

i

dt

(ΔTdc + Tac)

T 2
0

(49)

his time, the induced thermodynamic flux is just given by (46)
nd we obtain (in complex notations):

∗
i = P∗(t)

(�Tdc + T ∗
ac)

2 =
(

P0 + KsT
∗
ac

)
(�Tdc + T ∗

ac)
2
T0 1 + iωτ T0

(50)

he dc rate of production of entropy which maintains the system
n a non-equilibrium quasi-stationary state is found again (see

q
i
o
a
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q. (17)):

dc
i = Ks

(
�Tdc

T0

)2

= P0
�Tdc

T 2
0

= P2
0

KsT
2
0

(51)

his time, the permanent heat flux is flowing inside the sample
rom the hot source towards the cold source, and the internal
hermal conductance across the sample replaces the heat leak of
he non-adiabatic case. For the ac part, all the other oscillating
erms are either terms modulated at the frequency ω or terms
xpressed as a product of two oscillating terms in quadrature,
part for one term which oscillates at twice the frequency. When
he net entropy produced over the time scale of the experiment
s calculated by taking the time integral over one cycle, only this
atter term contributes. It is straightforward to see that this term
s

¯ ac
i = π

ω

Ks

[1 + (ωτ)2]

δT 2
ac

T 2
0

= π

(
δTac

T0

)2

C′′ (52)

. Kinetic relaxation time constant of internal degrees
f freedom

When a particular internal degree of freedom is suddenly
erturbed by a temperature variation, it relaxes following a
haracteristic kinetic relaxation time constant. This character-
stic time is the cause of the so-called frequency dependent
omplex heat capacity or generalized calorimetric susceptibility
13,14]. This later thermodynamic complex quantity is known
or a long time ago. The frequency dependent complex heat
apacity appears at the beginning of the 20th century in the field
f ultrasonic absorption on diluted gas. Then this notation was
efund later in the field of chemical relaxation and after used a
ot in the famous calorimetric experiments of Birge and Nagel
ith the so-called 3ω calorimetric method. We would just like

ecall here in a summary the important physical aspect of this
nusual thermodynamic quantity [1–3].

Firstly, a very important hypothesis necessary to understand
ell this concept is to assume that the system is in thermal

quilibrium. That is to say that the first two studied previous
hermal relaxation time constants do not play a role here. For
c-calorimetry experiments, mathematically this requirement
mplies the two following inequalities:

int � 1

ω
� τext (53)

xperimentally the useful working frequency range is chosen
n such a way that the system is in a stationary regime with
xternal temperature equilibrium (adiabaticity conditions) and
ith internal temperature equilibrium (infinite thermal diffusiv-

ty and perfect thermal contact). Secondly, let us now observe
particular internal degree of freedom inside the sample. This

nternal degree of freedom generally contributes to the total heat
apacity of the sample under study. That is to say, among the

uantity of heat supplied to the sample by the experimental-
st, this degree of freedom can absorb the necessary amount
f heat which totally excites it, allowing the system to be in
nother equilibrium thermodynamic state (another sample con-



moch

fi
a
t
d
t
t
s
t
q
o
i
i
e
t
t
t
d
r
i
i
o
w
t
t
l
o
d
c
h
o
n
a
c
p
n
n

7

c
t
t
i
c
o
a
e
s
c
e
e
t
e
h
t
l

t
O
(
i
t
m

a
i
e
r
i
g
h
m
t

A

P
e
t
a

A

V
c
l
x

the Fourier’s diffusion equation (see Eq. (24)) are in this case:(
dQ

dt

)
x=0

= P0 − KTx=0,

(
dQ

dt

)
x=L

= 0 (A.1)
J.-L. Garden, J. Richard / Ther

guration, another physical state, another chemical composition,
nother phase, etc.). However, if heat is supplied in a shorter
ime interval than the kinetic relaxation time constant of the
egree of freedom, this degree does not contribute entirely to
he equilibrium value of the measured heat capacity under the
ime scale of observation (because it is still relaxing). In this
ituation, the measured heat capacity is a non-equilibrium quan-
ity which varies on time. The heat capacity becomes a dynamic
uantity. On a strict thermodynamic point of view, the sample is
ut of equilibrium. As an example, the most well-known case of
rreversible process is the case of chemical reactions where the
nternal degree of freedom is characterized by an internal param-
ter, or an order parameter, usually called degree of advance of
he reaction or extent of the reaction. Over a given variation of the
emperature of the sample in a given time interval, it is possible
hat the extent of the reaction can not reach its equilibrium value
uring this time scale because of the slow kinetic of the chemical
eaction. Sometimes, the kinetic of the internal reorganization
nside the sample is so slow, that the internal degree of freedom
s completely frozen. The sample is thus completely frozen-in
ver the time scale of observation. At this level, from an original
ork of Prigogine and Mazur [15], we have envisaged recently

hat during the relaxation of the order parameter characterizing
he slow internal degree of freedom, a certain amount of heat is
ost (or absorbed) along a virtual axis represented by the value
f this order parameter [3]. Consequently, this amount of heat
oes not participate to the equilibrium part of the measured heat
apacity, exactly in such a same way envisaged for irreversible
eat diffusive effects and irreversible relaxation of heat carriers
f the previous sections. Moreover, this relaxation is accompa-
ied by a definite positive entropy production which, when it is
veraged over the time scale of the experiment (positive entropy
reation), is directly connected to the imaginary part of the com-
lex heat capacity exactly in a same manner than in the case of
on-equilibrium temperature of the sample (non adiabaticity and
on homogeneity of the temperature of the sample).

. Conclusion

When a time constant appears in modulated temperature
alorimetric experiment, it has to be compared to the charac-
eristic time scale of the experiment in order to see whether
he experiment is reversible (at thermodynamic equilibrium) or
rreversible (out of thermodynamic equilibrium). When this time
onstant cannot be neglected as compared to the time scale of
bservation, the heat capacity measurement becomes dynamic
nd the measured heat capacity becomes a complex number. For
ach time constant considered in this paper, it has been demon-
trated that the imaginary part of the complex heat capacity is
onnected following exactly the same equality to the positive
ntropy produced over the time scale of observation. The pres-
nce of an imaginary part in the complex heat capacity indicates
hat a part of the total heat supplied to the system cannot totally

xcite the sum of the degrees of freedom constituting the whole
eat capacity of the system. In the case of the non-adiabaticity,
his amount of heat flows away from the sample via the heat
eak. Since the imaginary part is inversely proportional to the

F
o
t
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hermal frequency, this effect is accentuated at low frequency.
n the other hand, for all the others time constant considered

thermal diffusivity, finite velocity of the heat carriers, and slow
nternal degree of freedom), the higher is the thermal frequency,
he bigger is this quantity of heat lost within the sample for the

easurement of the static equilibrium heat capacity.
From the results obtained in this paper, we would like to ask

n opened question: since the same fundamental relationship
s obtained either for the time constant implied in the thermal
quilibrium of the sample (thermal diffusivity and calorimet-
ic adiabaticity) or for the non-equilibrium behaviour of slow
nternal degrees of freedom within the sample, may this remark
ive rise to a generalized definition of the temperature? May the
eat capacity and particularly its imaginary part give rise to a
ore general definition of the temperature for systems out of

hermodynamic equilibrium?
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ppendix A

In general, in ac-calorimetry experiments, a sample of volume
= SL is linked by a thermal conductance K to a thermal bath of

onstant temperature T0 (cf. Fig. 7). The heater is assumed to be
ocated at the position x = 0 and the thermometer at the distance
= L from the heater on the sample as depicted in Fig. 7.

The two boundary conditions necessary for the resolution of
ig. 7. Typical situation of ac calorimetry experiment. A heater supplied an
scillating thermal power at a face of the sample and a thermometer records the
emperature at the other face of the sample at a distance L from the heater.
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or this geometry, the stationary solution of the diffusion equa-
ion yields to

∗
ac(x, t) = P0ch(ax − θ) exp(iωt)

Kchθ + Ksθshθ
(A.2)

ith Ks = k(S/L) the internal thermal conductance inside the
ntire sample volume and the complex parameter a:

= αL(1 + i) (A.3)

nd the complex parameter θ:

= (1 + i)α (A.4)

ith

=
√

ωC

2Ks
(A.5)

nd C = ρSLc the total heat capacity of the sample.
The complex heat capacity at the position x = 0 can be defined

s follows:

mes = P0

(∂T/∂t)x=0
= P0

iωT ∗
ac,x=0

= P0

iωT ∗
ac,x=Lchθ

(A.6)

here T ∗
ac,x=L is the oscillating temperature measured with the

hermometer.
From this definition, the imaginary part of the complex

mpedance of the measurement is calculated:

m

(
1

Cmes

)
=

(αKs/2)(sh2α − sin 2α)

+K(ch2α − sin2 α)

K2(ch2α − sin2 α) + 2α2K2
s (sh2α

+sin2 α) + αKKs(sh2α − sin 2α)

(A.7)

onsidering that the experiment is realized at such a frequency
han the sample is thermally insulated from the heat bath (adi-
baticity condition), the latter equation is simplified by putting
= 0:

m

(
1

Cmes

)
= sh2α − sin 2α

4αKs(sh2α + sin2 α)
(A.8)

he entropy production is calculated within the entire sample
y

i =
∫

(flux × force) dV = S

L∫
0

k

T 2
0

(
∂T ∗

ac

∂x

) (
∂T ∗

ac

∂x

)cc

dx

(A.9)

here the modulus of the oscillating temperature and the

onstant dc gradient across the sample are still together
eglected before the bath temperature T0. The cc super-
cript on the second temperature gradient means the complex
onjugation.

[
[
[
[
[
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The temperature gradient is obtained from (A.2):

∂T ∗
ac

∂x
= aP0sh(ax − θ) exp(iωt)

Kchθ + Ksθshθ

=

(α/L)(1 + i)P0{sh[α((x/L) − 1)] cos[α((x/L) − 1)]

+ich[α((x/L) − 1)] sin[α((x/L) − 1)]}exp(iωt)

[Kchα cos α + αKs (shα cos α − chα sin α)]

+i[Kshα sin α + αKs (chα sin α + shα cos α)]

(A.10)Thus(
∂T ∗

ac

∂x

) (
∂T ∗

ac

∂x

)cc

= 2(α2/L2)P2
0 {sin2[α((x/L) − 1)] + sh2[α((x/L) − 1)]}

K2(ch2α − sin2 α) + 2α2K2
s (sh2α

+sin2 α) + αKKs(sh2α − sin 2α)
(A.11)

The entropy production is

i = P2
0

T 2
0

αKs

2

sh2α − sin 2α

K2(ch2α − sin2 α) + 2α2K2
s (sh2α + sin2 α)

+αKKs (sh2α − sin 2α)
(A.12)

aking the limit when K tends to zero (adiabaticity) and inte-
rating over one half a period of the modulation (because of the
omplex conjugation) gives:

¯i = π

ω

P2
0

T 2
0

αKs

2

sh2α − sin 2α

2α2K2
s (sh2α + sin2 α)

= π

ω

P2
0

T 2
0

Im

(
1

Cmes

)
= π

(
δTac

T0

)2

C′′ (A.13)
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